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The top plot in Figure 6 of the accepted and published versions of the paper is incorrect.  Here is a corrected version of Figure 6.  
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Fig. 6.  (a) Fraction of incident rays that bounce once, twice, etc. 
at the front surface, and (b) reflection and ARC absorption vs  
for spherical caps.  Simulation details described in the text. 
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Abstract  —  The freeware program OPAL 2 computes the 

optical losses associated with the front surface of a Si solar cell.  It 
calculates the losses for any angle of incidence within seconds, 
where the short computation time is achieved by decoupling the 
ray tracing from the Fresnel equations.  Amongst other 
morphologies, OPAL 2 can be used to assess the random-pyramid 
texture of c-Si solar cells, or the ‘isotexture’ of mc-Si solar cells, 
and to determine (i) the optimal thickness of an antireflection 
coating with or without encapsulation, (ii) the impact of imperfect 
texturing, such as non-ideal texture angles, over-etched isotexture, 
and flat regions, and (iii) the subsequent 1D generation profile in 
the Si.  This paper describes the approach and assumptions 
employed by OPAL 2 and presents examples that demonstrate the 
dependence of optical losses on texture quality and incident angle. 

Index Terms — Antireflection coatings, Optical losses, Ray 
Tracing, Silicon, Software, Surface texture. 

I. INTRODUCTION 

Antireflection coatings (ARCs) and surface texture greatly 

enhance a solar cell’s capacity to absorb sunlight.  Both 

features also complicate the assessment of its optics. 

In the first case, an ARC introduces interference.  Reflection, 

absorption and transmission are therefore dependent on the 

thickness, refractive index n() and extinction coefficient k() 

of the ARC.  Moreover, the interference depends on n() of 

the overlying layer (e.g., EVA) and n() and k() of the 

underlying semiconductor (e.g., Si).  Complicating matters 

further, the interference depends on the angle and polarization 

of the incident light, an ARC can consist of multiple films, and 

n() and k() can vary significantly with wavelength . 

In the second case, surface texture causes light to reflect 

multiple times from the front surface.  Thus, reflection, 

absorption and transmission must be calculated for each 

‘bounce’ of light, and combined correctly to determine the 

total reflection, absorption and transmission.  In so doing, it is 

necessary to calculate how the texture alters the angle of 

incidence and the polarization of the light. 

The complexity of the optical structure can be solved via 

geometrical ray tracing when features are large enough to 

render diffractive effects negligible.  Many ray tracing 

programs, however, do not account for non-zero extinction 

coefficients or polarization. 

In 2010, we introduced OPAL, a freeware program that 

accurately models multiple interactions of normally incident 

light with surface texture, that accounts for -dependent 

complex refractive indices, and that implements a rigorous 

approach to the analysis of the polarization of rays as they 

interact with the structure [1, 2].  The program also calculates 

the resulting generation current JG within the underlying 

substrate for a user-defined spectrum, thereby permitting ARC 

optimization via maximizing JG. 

In this paper we present OPAL 2, which extends the 

functionality to include 

• illumination of any angle of incidence and polarization; 

• hillocks (octagon-based pyramids), which can arise under 

some processing conditions on c-Si [35]; 

• spherical caps, which have been demonstrated to 

approximate isotextured mc-Si [6, 7]; 

• V grooves; 

• imperfect texture, whereby pyramids, hillocks and  

spherical caps have a non-ideal characteristic angle, as 

occurs in practical solar cells [3, 7];  and 

• incomplete texture, where a user-defined proportion of the 

wafer is textured and the remainder is planar. 

OPAL 2 also contains a larger database of n() and k() for 

optical materials, calculates an approximate 1D generation 

profile, calculates JSC for a given IQE(), and is faster. 

In this paper, we first reiterate the general approach taken by 

the freeware program including the assumptions that underlie 

the aforementioned extensions.  We demonstrate its application 

to practical Si solar cells by determining the optical losses for 

random pyramids, random hillocks and spherical caps over a 

range of characteristic angles, incident angles, and planar 

fractions.  The program is free and available online [8].  

II. APPROACH AND ASSUMPTIONS 

There are three principal components to OPAL 2: ray 

tracing, thin-film optics; and equivalent-current calculations. 

A. Ray tracing 

In generic ray tracing programs, reflection, absorption and 

transmission (RAT) are usually calculated at every interaction 

of every ray.  When thin-film coatings are included, this leads 

to relatively long computation times because the Fresnel 

equations are solved at every interaction. 

By contrast, OPAL recognizes that the number of ‘unique 

paths’ is small, where all rays within a unique path reflect from 

the same facets at the same angles and must therefore have the 

same RAT.  Thus, the Fresnel equations need only be solved 

for each path, not for every ray.  In fact, some paths are 

subsets of other paths, making the number of necessary 

computations even smaller;  and some paths that impinge on 
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different facets are effectively identical under a certain 

polarization, making the number of unique paths smaller still. 

A simple example is regular upright pyramids with 

 = 54.74° under normally incident unpolarized light.  In this 

case, 88.8% of rays reflect twice from opposing pyramid facets 

at angles of 54.74° and 15.79°, while 11.1% reflect three times 

at 54.74°, 15.79° and 86.32° [9].  Moreover, unpolarized light 

striking any of the four pyramid facets gives the same RAT due 

to the x/y symmetry. It is therefore only necessary to calculate 

RAT at three angles for each wavelength of interest, and to 

combine them appropriately with the path fractions.
1
 

In the above example, path fractions are readily calculated by 

simple geometry [9].  But when the angle of incidence is not 

normal, or for irregular structures such as random pyramids, it 

is generally simpler to employ ray tracing to determine the 

possible paths and their fractions.  At the upper extreme, a ray 

tracing simulation with 100,000 rays impinging on randomly 

distributed hillocks at  = 20
o
 and  = 20

o
 finds ~350 unique 

paths;  about 165 of these paths account for 99% of rays.  The 

subsequent RAT calculations for all of these paths is ne-

cessarily slower than for typical structures, but not debilitating. 

In OPAL 1, ray tracing had been performed externally for 

normally incident light and an ideal  [1, 2] and the paths were 

stored in look-up tables.  In OPAL 2, the ray tracing is 

conducted internally.  This permits the user to choose any , 

any incident angle, and to include more complicated 

                                                         
1 This approach does not apply to the tracing of transmitted rays within the 

substrate because refraction depends on wavelength.  Also, once transmitted 

into the substrate, rays can escape from internal boundaries even before passing 

through the substrate;  this possibility is neglected by OPAL 2. 

morphologies such as hillocks and planar regions. 

The inputs required of the ray tracing component are 

• the zenith angle  to the normal of the plane of the cell, 

and the azimuth  angle to the [100] crystal axis (Fig. 1); 

• the morphology, i.e., the type of texture; 

• the characteristic angle  of the texture, defined in Fig. 2; 

• the choice of whether pyramids (or hillocks) are 

distributed in a random or regular fashion, 

• the fraction of the surface that is planar (i.e., untextured). 

The planar fraction can either be independent of the texture, 

as might be the case when representing large regions where 

texturing failed, or it can be distributed amongst the texture.  

As illustrated by Fig. 2(d), ‘distributed’ planar regions are 

defined as surrounding each facet such that rays can bounce 

from a facet onto a planar region and possibly from there onto 

a neighboring facet.  It is evident that for concave 

morphologies, such as inverted pyramids or spherical caps, 

light cannot reflect from a planar region onto a facet (or vice 

versa) when defined in this way;  thus, for these morphologies, 

distributed and independent planar fractions yield identical 

results. 

With the aforementioned inputs, OPAL 2 employs ray 

tracing to determine the set of unique paths that the incident 

light follows.  Since RAT is not calculated, since polarization is 

not monitored, and since the paths are independent of 

wavelength, the ray tracing is fast.  On the current server, 

30,000 rays are typically traced in less than 0.3 s. 

Fig. 3 presents the results of ray tracing for regular ideal 

upright pyramids with   = 30° and   = 30°.  The figure plots 

the path fractions, where the symbols are the average of 10 

simulations, and the error bars are the 95% confidence interval 

attained from those 10 simulations.  For clarity, only four of 

the ten unique paths are shown.  In this example, we find that 

after 10,000 rays, the 95% confidence interval is less than 

±0.4% (absolute) for every path.  

B. Thin-film calculations 

Having determined the set of unique paths, the reflection, 

absorption and transmission (RAT) of each path is calculated.  

This requires additional inputs: 

  



  

 (a) (b) (c) (d) 
 
Fig. 2.  (a) An upright pyramid, (b) a hillock, and (c) a spherical cap, where  denotes the characteristic angle; and (d) an example of a 
‘distributed’ planar region about an upright pyramid, where the sides of the pyramid are equidistant from the planar square. 
 

             
Fig. 1.  Coordinate system used in OPAL 2, where  and  define the 
incident angle, and  defines the polarization angle. 
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• the polarization of the incident light, where one can either 

select unpolarised light or light polarized at angle ; 

• the number and thickness of any thin-film ARCs, where up 

to 5 films are permitted; 

• the materials of the superstrate, films, and substrate. 

As an example, to simulate the optics at the encapsulant–cell 

interface of a high-efficiency solar cell, one might select EVA 

as the superstrate, SiNx as an upper film, SiO2 as a lower film, 

and c-Si as the substrate.  Or if simulating internal reflection, 

one might invert the order of the four layers. 

OPAL 2 then solves the Fresnel equations to determine RAT 

at each bounce of each path, and combines them appropriately 

to determine the total RAT for the incident light. This is 

performed over a range of wavelengths using n() and k() 

stored for each material, or alternatively, customized n() and 

k() that have been uploaded.  The approach is described in 

more detail in [2]. 

In the case of unpolarized light, the program determines 

RAT at multiple polarization angles  and averages them with 

equal weighting.  We find that for typical conditions of interest 

to PV cells, unpolarized light is well approximated by the 

average of 3 uniformly spaced polariziation angles (i.e.,  = 0°, 

60° and 120°), but 9 angles gives more accuracy with little cost 

in processing time (i.e.,  = 0°, 20°, …, 140°, and 160°). 

Fig. 4 presents the RAT for the aforementioned example of 

the high-efficiency solar cell under normally incident light. 

C. Current calculations 

The purpose of optical simulations is usually to maximize 

current generation and/or current collection in a solar cell.  As 

well as the RAT determined above, this requires the incident 

spectrum and a model for the internal optics and/or collection. 

In regards to the internal optics employed by OPAL, the user 

defines an optical width equal to Z·W, where Z is the optical 

pathlength enhancement and W is the width of the substrate.  

They are then used to determine the generation current JG, 

JG = q·  I() · cos() · T() · exp[()·Z·W] · d (1) 

where q is the charge of an electron, I() is the photon flux of 

the incident spectrum under normal incidence, T() is the 

transmission into the substrate, and  is the absorption 

coefficient of the substrate; the integral is performed over all . 

OPAL 2 also calculates the equivalent current that is 

reflected by the cell JR, and absorbed in the ARC JA, by 

replacing T() with either R() or A().  In so doing, it 

calculates the current density that would have been generated 

in the substrate had it not been reflected or absorbed.  This is a 

more meaningful metric than the commonly used ‘weighted 

average reflectance’ (WAR), which is the equivalent of 

arbitrarily defining wavelength limits to the integral and setting 

the exponential term to unity.  (Making the WAR less useful 

still is that its wavelength limits are not standardized.) 

OPAL 2 sums JR, JA and JG to determine the equivalent 

incident current density Jinc.  This is the current density that 

would have been generated in the substrate if there had been 

no external optical losses at the front surface.  Be aware that 

Jinc is dependent on (), Z and W. 

Thus, one can use OPAL 2 to find an ARC that maximizes 

JG for a large variety of morphologies, materials, spectra and 

incident angles.  One can also upload a cell’s IQE() to 

maximize the collection current instead of JG;  in this case, the 

IQE() should not include the effects of ARC absorption since 

that is introduced by the OPAL simulations. 

Finally, a 1D generation current is determined using models 

for pyramidal texture [10] and spherical caps [11]. 

III. HILLOCKS AND SPHERICAL CAPS 

Upright pyramids, inverted pyramids and V grooves are well 

known morphologies that have been assessed in much detail.  

Two additional morphologies—each with a practical 

relationship to industrial solar cells—are hillocks and spherical 

caps.  They are illustrated in Figs. 2b and 2c. 

A. Hillocks 

Hillocks are octagon-based upright pyramids.  They have 

been observed in the IC industry [4, 5] and more recently in the 

PV industry [3, 12, 13].  They are generally thought to be 

comprised of eight {567} facets rather than the four {111} 

facets of the better known square-based upright pyramid.  

These ‘off-axis’ facets evolve due to the exposure of 

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

10 100 1000 10000

Fr
ac

ti
o

n
 o

f 
ra

ys

Rays traced

Path G

Path F

Path C

Path A

 
Fig. 3. Fraction of rays vs number of rays traced for 4 of 10 paths 
for regular upright pyramids with  = 30° and  = 30°. Symbols 
represent the average of N = 10 simulations, error bars are the 
95% confidence interval, 2/(N  1), where  is the st. deviation. 
 

 
Fig. 4.  RAT for the example of the high-efficiency solar cell 
described in the text.  The AM1-5g spectrum is also plotted. 
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‘bevelling’ planes at convex corners or the formation of ledges 

on facets.  Their existence has been deduced from angle-

dependent reflection measurements [3] and SEM images [4, 5]. 

As evident in Fig. 2b, a surface cannot be entirely comprised 

of {567} facets unless the hillocks overlap—as they might in 

the random texture formed by common alkaline etching.  In 

OPAL 2, however, the space between the {567} facets is 

assumed planar, and hence the simulation of hillocks has a 

minimum planar fraction of 8.8%.  Alternative approaches to 

modeling hillocks are intended for future versions. 

B. Spherical caps 

Spherical caps, depicted in Fig. 2c, are elements of a sphere 

whose two-dimensional counterpart is a circular segment.  In 

this case, we define  such that when  = 90°, the spherical 

cap is an inverted hemisphere, and when  approaches 0°, the 

spherical cap approaches a planar surface. 

It has recently been demonstrated that lightly etched 

isotexture can be well modeled as inverted spherical caps with 

 ~ 87° [7].  It was further found that as the duration of the 

isotexture increases, the resulting morphology is better 

modeled as spherical caps with decreasing .  After extensive 

etching,  approaches 0° and the surface is effectively flat.  

While determining a set of unique paths is possible for 

morphologies comprised of discrete facets, such as pyramids, 

hillocks and V grooves, this is not strictly possible for spherical 

caps, which have a single and continuous facet.  Theoretically, 

therefore, spherical caps have infinitely many unique paths.  

OPAL 2 approximates spherical caps by treating them as a 

user-defined number of concentric sections of a cone. 

With the option to simulate spherical caps, OPAL 2 is the 

first software to permit optical modeling of isotextured solar 

cells, which comprised >50% of cells manufactured in 2011. 

IV. EXAMPLES 

A. Variation of the characteristic angle,  

Optical analyses of pyramidally textured solar cells usually 

assume that  = atan(2) = 54.74°.  This is the angle between 

the {100} and {111} planes, and can be considered ideal.  In 

practice, however,  is less than ideal for random pyramids 

because the ratio of the etch rates for {100} to {111} is never 

infinite [14].  Experimental ratios between 5 and 200 have been 

reported [15–17].  

OPAL 2 can simulate morphologies over a wide range of .  

It is demonstrated here with four cases: (1) regular upright 

pyramids, (2) random upright pyramids, (3) random hillocks, 

and (4) spherical caps.  The results are presented in Figs. 5 and 

6, which plot the fraction of incident rays that bounce once, 

twice, thrice, etc., from the front surface as a function of . 

Figs. 5 and 6 also plot and compare the optical losses as 

fractions, JR/Jinc and JA/Jinc, where the losses are determined 

for c-Si cells in air under an unpolarized normally incident 

AM1-5g spectrum.  The cell thickness is W = 180 µm and the 

optical enhancement is Z = 4 (except for Case 4, when Z = 2.)  

In each simulation, an SiNx ARC is included;  its thickness is 

set to minimize the optical losses at each .  The refractive 

index of SiNx is taken from [2], which represents a low-n film 
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Fig. 5.  Fraction of rays that bounce twice, three times, etc., at the 
front surface of (a) regular upright pyramids, (b) random upright 
pyramids, and (c) random hillocks as a function of the characteristic 
angle ; and (d) reflection and absorption vs  for Cases 1, 2 & 3. 
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that provides very good surface passivation [20], and the 

refractive index of c-Si is taken from [21].  For the random 

structures, the pyramid/hillock heights differed by at most a 

factor of 5 and their bases were unaligned [11].  The 

wavelength was swept in 5 nm intervals from 250 to 1400 nm. 

Fig. 5 illustrates that for regular upright pyramids there is 

only a slight increase in reflection when  is smaller than the 

ideal (54.74°).  This is because all normally incident rays 

bounce twice from upright regular pyramids over the range  = 

45–54°.  By contrast, there is a rapid decrease in reflection as 

 increases above 54° because an increasing number of rays 

bounce three times from the pyramid facets [9].  Fig. 6 

illustrates that for spherical caps, there is a gradual reduction in 

reflection as  increases, as dictated by the gradual increase in 

the fraction of rays that have multiple bounces (Fig. 6a). 

Conclusions regarding the dependence of ray paths on 

regular structures are not novel and can be deduced with 

trigonometry;  for example the green line in Fig. 5a follows the 

equation cos(5)/cos() between 54° and 60° [9].  The 

geometry becomes rather complicated, however, for non-

normally incident light and for irregular texture, such as 

random upright pyramids and hillocks. 

Plotting path fractions gives insight into optical losses.  The 

comparison of regular and random pyramids evident in Fig. 5 

provides an example.  From simple geometry one can deduce 

that they must be identical at  = 45° since all normally 

incident rays bounce exactly twice from either texture.  But as 

 increases, random texture becomes increasingly superior to 

regular texture as more and more rays are reflected three times 

due to glancing bounces from orthogonal pyramids.  At 

approximately the ideal  of 54.74°, and surreptitiously for 

industrial c-Si solar cells, random pyramids enjoy their greatest 

advantage over regular pyramids.  (Thus, at this angle, treating 

random pyramids as regular pyramids incurs the greatest 

error.)  As  increases further, regular pyramids rapidly 

become superior as all rays are reflected three times, while 

random pyramids still allow some rays to reflect twice before 

‘escaping’ over smaller pyramids. 

It is relevant to note here that within the range of  observed 

for experimental alkaline-etched samples ( = 50–54.74
o
 [3]), 

the reduction in reflection is more severe for random rather 

than regular pyramids.  Many conclusions such as these can be 

deduced from an optical evaluation of surface morphologies. 

B. Angle of incidence 

It can also be amusing to assess the losses for non-normal 

angles of incidence.  Fig. 7 plots the losses as a function of  

with   = 0° for Cases (a) and (b), which represent regular and 

random upright pyramids with  = 54.74°. 

Fig. 7 illustrates that the relative advantage or disadvantage 

of random over regular pyramids varies with .  The causes of 

these subtle differences are not expounded here.  Of more 

importance, the figure shows that there is a distinct and rapid 

increase in optical losses for both morphologies when  > 25°. 
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Fig. 6.  (a) Fraction of incident rays that bounce once, twice, etc. 
at the front surface, and (b) reflection and ARC absorption vs  
for spherical caps.  Simulation details described in the text. 
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Fig. 7.  Optical losses vs  for  = 0° for regular (solid symbols) 
and random (open symbols) upright pyramids for Case (a) & (b). 
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There is a plethora of complicating factors when considering 

the implications for PV modules: reflection from the glass, 

absorption in the glass and encapsulant, polarization, azimuth 

angle, and changes in spectrum and intensity throughout the 

day and year.  Accounting for all of them is a large and tedious 

undertaking—and one that exceeds the capabilities of OPAL 2.  

Nevertheless, if one applies Snell’s law and assumes planar 

module surfaces and an encapsulant refractive index of 1.5, 

then sunlight incident to a module at < 39.3° will be refracted 

such that its incident angle to the cells is < 25°.  Thus, for a 

large fraction of the useful sunlight hours in a day, the relative 

optical losses of our example remain approximately constant. 

C. Independent or distributed planar regions 

It is not uncommon for texturing to cover a portion of a 

wafer and for the remainder to be planar.  As described above, 

OPAL 2 can treat planar regions as being optical independent 

from the texture, or evenly distributed within the texture.  

These cases represent the two extremes of how planar regions 

behave optically on a textured wafer.  

When the planar regions are distributed rather than 

independent, the optical losses are necessarily greater for 

normally incident light.  While each case has the same fraction 

of rays striking its planar surface, the distributed case reflects 

some rays from a texture facet onto a planar region and from 

there into space, negating any possibility of a third bounce.  

Fig. 8 plots the optical losses for random upright pyramids 

with Case (b) at  = 54.74° under normally incident light. 

VI. CONCLUSION 

Like Giza, c-Si solar cells are decorated with square-based 

aligned pyramids of differing heights and elevation but of 

similar base angles;
2
  and in the case of poor alkaline etching, 

the pyramids of c-Si solar cells are also surrounded by planar 

areas.  It is of passing interest then that had Cheops and his 

descendants expanded their necropolis to an effectively infinite 

extent in the x/y plane, OPAL 2 might now be used by 

Egyptologists.  They would find that it offered a rapid and 

accurate means to determine the reflection and absorption at 

Giza under any angle of incidence or polarization, but unlike 

photovoltaic engineers, they would find no value in its capacity 

to quantify the optical losses from inverted pyramids, V 

grooves, hillocks or spherical caps, the last of which simulates 

the isotexture of mc-Si solar cells. 

                                                         
2 The facets of the three main pyramids at Giza are aligned to the 

cardinal directions;  the base angles are 51°, 52° and 53°;  the original 

heights vary by a factor of 2.2; and there is a spate of small and 

somewhat ill-formed satellite pyramids similarly aligned.  Whether the 

size and location of the three big pyramids were intended to represent 

the stars of Orion’s belt is a matter of contention, but it can be 

concluded that since they were coated in a radiant white limestone, the 

Pharaohs did not construct the pyramids to suppress reflection. 
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Fig. 8.  Optical losses for Case (b) vs the planar fraction for 
independent and distributed planar regions. 
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